

Amino acid Biosynthesis in Chloroplasts

B. J. MIFLIN

Rothamsted Experimental Station, Harpenden, Herts

The synthesis of amino acids depends upon the supply of reduced nitrogen and the provision of carbon skeletons, usually in the form of α -keto acids. The nitrogen supplied to leaves is either as nitrate or as amino acids. The nitrogen from the latter can be incorporated into other amino acids via transamination; this reduction and the subsequent incorporation of ammonia into α -amino nitrogen is strongly light-dependent [1]. Although isolated intact chloroplasts cannot fix $^{14}\text{CO}_2$ into amino acids in any significant amount [2], they can reduce and incorporate nitrite [3]. The enzymes required for this process and also acetolactate synthase, which is required for the synthesis of the carbon skeletons of leucine, isoleucine and valine, have been shown by density gradient separation techniques to be present in chloroplasts [4]. Although chloroplasts contain low levels of glutamate dehydrogenase [5], the level of glutamine synthase is much higher. The K_m 's of the extracted enzymes also favour ammonia assimilation into glutamine rather than glutamate. It has recently been shown that the amido group of glutamine can be transferred to the amino group of glutamate by a ferredoxin-independent glutamate synthase [6]. It is considered that this pathway, which does not involve glutamate dehydrogenase, is the major route of nitrogen assimilation in leaves. This hypothesis is consistent with the results of ^{15}N incorporation patterns [7].

1. Canvin, D. T. and Atkins, C. A. (1974) *Planta* **116**, 207.
2. Givan, C. V. and Leech, R. M. (1971) *Biol. Rev.* **46**, 409.
3. Miflin, B. J. (1974) *Planta* **116**, 187.
4. Miflin, B. J. (1974) *Plant Physiol.* **54**, 550.
5. Lea, P. J. and Thurman, D. A. (1972) *J. Exp. Biol.* **23**, 440.
6. Lea, P. J. and Miflin, B. J. (1974) *Nature* **251**, 614.
7. Lewis, O. A. M. and Pate, J. S. (1973) *J. Exp. Botany* **24**, 596.

Asparagine Metabolism in Higher Plants

P. J. LEA

Biochemistry Department, Rothamsted Experimental Station, Harpenden, Herts

Asparagine has frequently been shown to be a major constituent of the soluble fraction of plant extracts [1]. A review of the literature has shown that asparagine is formed when there is excess ammonia in the plant, either as a result of protein degradation followed by oxidation of amino acids, or by external application [1]. Ammonia is converted to asparagine as a detoxification process; the ratio of 2N atoms to 4C atoms makes the molecule very economic for the storage of superfluous nitrogen.

The conversion of aspartate to asparagine has long been the subject of discussion, since many authors have found only very low incorporations of ^{14}C -Asp into asparagine *in vivo*. Fumarate, malate and, in particular, succinate have been shown to be the main precursors of asparagine when applied externally [2, 3]. Although numerous attempts have been made to detect the presence of an enzyme capable of converting aspartate to asparagine, only Streeter [3] and Rognes [4] were able to

demonstrate a very unstable enzyme in crude preparations utilizing the amide group of glutamine. A glutamine-dependent asparagine synthetase has recently been purified and characterized from 6-day-old lupin seedlings, the enzyme has a very low K_m for glutamine compared to ammonia [5]. As glutamine is now thought to be the main entry point of ammonia into amino acids [6], the direct transfer of the amide group to aspartate would liberate glutamate for the acceptance of a further ammonia molecule.

Evidence from radioactive tracer studies have shown that asparagine is not metabolized in seedlings [7], although early work has shown that asparagine is metabolized in leaves in the light, and disappears in legumes during fruit formation [1]. Enzymes capable of transaminating asparagine to form α -ketosuccinamic acid have been known for some years [8] but their role in asparagine breakdown is not understood; these enzymes forming glutamate and alanine are presently being investigated in leaves. Although asparagine is metabolized by isolated chloroplasts in the light, it is not a substrate for the transfer of the amide group to α -oxoglutarate in the presence of reduced ferredoxin [6]. An oxidation of NAD(P)H in the presence of asparagine and α -oxoglutarate, has been demonstrated by Dougall [9] in tissue culture extracts, although the products of the reaction have not been characterized. However, attempts in this laboratory to demonstrate a reduced coenzyme dependent transfer of the amide group to acceptor α -oxo acids in various plant extracts have so far been unsuccessful.

1. McKee, H. S. (1962) In *Nitrogen Metabolism in Plants*. Clarendon Press, Oxford.
2. Mitchell, D. J. and Bidwell, R. G. S. (1970) *Can. J. Botany* **48**, 2001.
3. Streeter, J. G. (1973) *Arch. Biochem. Biophys.* **157**, 613.
4. Rognes, S. E. (1970) *Fed. Eur. Biochem. Soc. Letters* **10**, 62.
5. Lea, P. J. and Fowden, L. (1975) in preparation.
6. Lea, P. J. and Miflin, B. J. (1974) *Nature* **251**, 614.
7. Lees, E. M., Farnden, K. J. F. and Elliott, W. H. (1968) *Arch. Biochem. Biophys.* **126**, 539.
8. Kretovich, V. L. (1958) in *Advances in Enzymology* (Nord, F. F., ed.), Vol. 20, p. 319. Interscience, New York.
9. Dougall, D. K. (1974) *Biochem. Biophys. Res. Commun.* **58**, 639.

The Enzymatic Cleavage of the C-S Bond of Substituted Cysteines in Higher Plants

MENDEL MAZELIS

Department of Food Science and Technology, University of California, Davis, CA 95616, U.S.A.

The enzyme alliin lyase (E.C. 4.4.1.4) has been partially purified from garlic cloves, onion bulbs, and *Brassica* sp. [1-3]. The enzyme from each source is specific for the sulfoxide structure, having no activity on the thioether analogue. Pyridoxal phosphate appears to be a necessary cofactor. The enzymes differ as to their pH optima. The garlic and onion enzymes have similar Michaelis constants for the same substrates, but differ from the *Brassica* enzyme. *Brassica* species also can cleave L-cysteine to cysteine persulfide, pyruvate, and ammonia [4]. At least two isoenzymes have been found which have cystine lyase and alliin lyase activity [5]. An enzyme in the hypocotyls of

Acacia farnesiana seedlings which will cleave both the thioether and sulphoxide forms of S-alkyl cysteines has been purified essentially to homogeneity [6]. It has a MW of about 144000 consisting of one subunit of 96000 and another of *ca* 48000 daltons. One mol of pyridoxal phosphate is bound per mol of enzyme. The energy of activation with L-djenkolate as the substrate is 12.7 kcal. The partial specific volume is 0.56 and the sedimentation coefficient 7.26S. The enzyme will also utilize *O*-methyl-DL-serine as a substrate and much less effectively β -methylamino- α -aminopropionate.

1. Mazelis, M. and Crews, L. (1968) *Biochem. J.* **108**, 725.
2. Schwimmer, S. and Mazelis, M. (1963) *Arch. Biochem. Biophys.* **100**, 66.
3. Mazelis, M. (1963) *Phytochemistry* **2**, 15.
4. Mazelis, M., Beimer, N. and Creveling, R. K. (1967) *Arch. Biochem. Biophys.* **120**, 371.
5. De Lima, D. and Mazelis, M. unpublished results.
6. Mazelis, M. and Creveling, R. K. unpublished results.

Non-protein Amino acids derived from Primary Secondary Biosynthetic Pathways

PEDER OLESEN LARSEN

Chemical Institute, Royal Veterinary and Agricultural University, Copenhagen, Denmark

The non-protein amino acids are produced either by secondary pathways derived from protein amino acids or other primary metabolites or by branching from primary pathways used for the production of protein amino acids. This distinction is used as a basis for a discussion of three groups of amino acids, the straight chain C₄-amino acids, the amino acids related to lysine, and the aromatic amino acids.

Two newly discovered amino acids, *N*-(3-amino-3-carboxypropyl)azetidine-2-carboxylic acid and *N*-[*N*-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid are derived from azetidine-2-carboxylic acid. Azetidine-2-carboxylic acid can chemically be transformed to a number of amino acids including methionine and homoserine [1]. On this basis the possible roles of azetidine-2-carboxylic acid as intermediate and end-product are discussed. Vinylglycine has recently been synthesized [2] and isolated from a mushroom [3]. This amino acid has previously been proposed as intermediate in transformations of threonine and other amino acids.

The biosynthesis of lysine in barley takes place via the diaminopimelic acid pathway [4]. No amino acids have been found in higher plants deriving from this pathway. The previous claim of the presence of diaminopimelic acid has not been validated and dilution experiments indicate that the level of free diaminopimelic acid in barley is very low or nil. On the other hand, a large number of amino acids and other compounds are produced by transformation of lysine.

The pathways leading to phenylalanine, tyrosine, and tryptophan from shikimic acid by branching give rise to a number of plant amino acids including 3-(3-carboxyphenyl)-alanine, 3-(3-carboxy-4-hydroxyphenyl)alanine, and *p*-aminophenylalanine [5-7]. The reactions leading to the large variety of compounds derived from chorismic acid have recently been rationalized into a coherent framework [7].

1. Kristensen, I. and Larsen, P. O. (1974) *Phytochemistry* **13**, 2791.

2. Frits, P., Helboe, P. and Larsen, P. O. (1974) *Acta Chem. Scand. B* **28**, 317.
3. Dardenne, G. A., Casimir, J., Marlier, M. and Larsen, P. O. (1974) *Phytochemistry* **13**, 1897.
4. Moller, B. L. (1974) *Plant Physiol.* **54**, 638.
5. Larsen, P. O., Onderka, D. K. and Floss, H. G. (1972) *J.C.S. Chem. Comm.*, 842.
6. Larsen, P. O., Onderka, D. K. and Floss, H. G. in preparation.
7. Dardenne, G. A., Larsen, P. O. and Wieczorkowska, E. in preparation.

Some New Aromatic Amino Acids

E. A. BELL, K. MWAULUKA and B. V. CHARLWOOD

Department of Plant Sciences, King's College, London

Phenylalanine and tyrosine are found in all living organisms and it has been known for many years that 3,4-dihydroxyphenylalanine occurs in certain plants. Other aromatic amino acids which have been found more recently include 3-hydroxyphenylglycine [1], 3,5-dihydroxyphenylglycine [1], 3-hydroxyphenylalanine (*m*-tyrosine) [2], 2,4-dihydroxy-6-methylphenylalanine (β -orecylalanine) [3], 3-carboxyphenylalanine [4], 3-carboxytyrosine [5], 3-hydroxymethylphenylalanine [6], 4-hydroxy-3-hydroxymethylphenylalanine [6], 4-aminophenylalanine [7] and the α amino acids 3-carboxy- α -phenylglycine [8, 9] and 3-carboxy-4-hydroxy- α -phenylglycine [10].

In the seeds of *Combretum zeyheri* from Zambia we have found high concentrations of tyrosine, 3-carboxy-L-phenylalanine, 3-hydroxymethyl-L-phenylalanine and two other aromatic amino acids. The first of these analysed as *N*-methylytyrosine, an amino acid reported in the earlier literature as occurring in extracts of the barks of *Geoffroya surinamensis*, *Ferreira spectabilis* and *Andira anthelmintica* [11] and reported as the α -isomer. Studies indicating the L configuration for the isolate from *C. zeyheri* are now reported. The second compound was isolated and shown to be a new amino acid 3-aminomethylphenylalanine—the structure being confirmed by synthesis from 3-cyanophenylalanine, kindly supplied by Professor P. O. Larsen. Preliminary experiments indicate that the new amino acid is derived from shikimic acid, *de novo* synthesis having been shown to occur in the plant seedlings.

1. Müller, P. and Schütte, H. R. (1968) *Z. Naturforsch.* **23b**, 659.
2. Mothes, K., Schutte, H. R., Müller, P., Ardenne, M. V. and Tümler, R. (1964) *Z. Naturforsch. Z.* **19b**, 1161.
3. Schneider, G. (1958) *Biochem. Z.* **330**, 428.
4. Thompson, J. F., Morris, C. J., Asen, S. and Irreverre, F. (1961) *J. Biol. Chem.* **236**, 1183.
5. Larsen, P. O. and Kjaer, A. (1962) *Acta Chem. Scand.* **16**, 142.
6. Watson, R. and Fowden, L. (1973) *Phytochemistry* **12**, 617.
7. Dardenne, G. A., Marlier, M. and Casimir, J. (1972) *Phytochemistry* **11**, 2567.
8. Morris, C. J., Thompson, J. F., Asen, S. and Irreverre, F. (1959) *J. Am. Chem. Soc.* **81**, 6069.
9. Friis, P. and Kjaer, A. (1963) *Acta Chem. Scand.* **17**, 2391.
10. Kjaer, A. and Larsen, P. O. (1963) *Acta Chem. Scand.* **17**, 2397.
11. Johnson, T. B. and Nicolet, B. H. (1912) *Am. Chem. J.* **47**, 459.